skip to main content


Search for: All records

Creators/Authors contains: "Piper, Louis F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Epitaxial films of vanadium dioxide (VO 2 ) on rutile TiO 2 substrates provide a means of strain-engineering the transition pathways and stabilizing of the intermediate phases between monoclinic (insulating) M1 and rutile (metal) R end phases. In this work, we investigate structural behavior of epitaxial VO 2 thin films deposited on isostructural MgF 2 (001) and (110) substrates via temperature-dependent Raman microscopy analysis. The choice of MgF 2 substrate clearly reveals how elongation of V–V dimers accompanied by the shortening of V–O bonds triggers the intermediate M2 phase in the temperature range between 70–80 °C upon the heating–cooling cycles. Consistent with earlier claims of strain-induced electron correlation enhancement destabilizing the M2 phase our temperature-dependent Raman study supports a small temperature window for this phase. The similarity of the hysteretic behavior of structural and electronic transitions suggests that the structural transitions play key roles in the switching properties of epitaxial VO 2 thin films. 
    more » « less
  2. Abstract

    The disproportionation of H2O into solar fuels H2and O2, or water splitting, is a promising strategy for clean energy harvesting and storage but requires the concerted action of absorption of photons, separation of excitons, charge diffusion to catalytic sites and catalysis of redox processes. It is increasingly evident that the rational design of photocatalysts for efficient water splitting must employ hybrid systems, where the different components perform light harvesting, charge separation and catalysis in tandem. In this topical review, we report on the recent development of a new class of hybrid photocatalysts that employs MxV2O5(M = p-block cation) nanowires in order to engineer efficient charge transfer from the photoactive chalcogenide quantum dots (QDs) to the water-splitting and hydrogen evolving catalysts. Herein, we summarize the oxygen-mediated lone pair mechanism used to modulate the energy level and orbital character of mid-gap states in the MxV2O5nanowires. The electronic structure of MxV2O5is discussed in terms of density functional theory and hard x-ray photoelectron spectroscopy (HAXPES) measurements. The principles of HAXPES are explained within the context of its unique sensitivity to metal 5(6)s orbitals and ability to non-destructively study buried interface alignments of quantum dot decorated nanowires i.e., MxV2O5/CdX (X = S, Se, Te). We illustrate with examples how the MxV2O5/CdX band alignments can be rationally engineered for ultra-fast charge-transfer of photogenerated holes from the quantum dot to the nanowires; thereby suppressing anodic photo-corrosion in the CdX QDs and enabling efficacious hydrogen evolution.

     
    more » « less
  3. The search for new wide-band-gap materials is intensifying to satisfy the need for more advanced and energy-efficient power electronic devices. Ga2O3 has emerged as an alternative to SiC and GaN, sparking a renewed interest in its fundamental properties beyond the main β-phase. Here, three polymorphs of Ga2O3, α, β, and ε, are investigated using X-ray diffraction, X-ray photoelectron and absorption spectroscopy, and ab initio theoretical approaches to gain insights into their structure–electronic structure relationships. Valence and conduction electronic structure as well as semicore and core states are probed, providing a complete picture of the influence of local coordination environments on the electronic structure. State-of-the-art electronic structure theory, including all-electron density functional theory and many-body perturbation theory, provides detailed understanding of the spectroscopic results. The calculated spectra provide very accurate descriptions of all experimental spectra and additionally illuminate the origin of observed spectral features. This work provides a strong basis for the exploration of the Ga2O3 polymorphs as materials at the heart of future electronic device generations. 
    more » « less